
Modeling and Rendering of Realistic Feathers

Yanyun Chen Yingqing Xu Baining Guo Heung-Yeung Shum

Microsoft Research Asia
�

Abstract

We present techniques for realistic modeling and rendering of feath-
ers and birds. Our approach is motivated by the observation that
a feather is a branching structure that can be described by an L-
system. The parametric L-system we derived allows the user to
easily create feathers of different types and shapes by changing a
few parameters. The randomness in feather geometry is also in-
corporated into this L-system. To render a feather realistically, we
have derived an efficient form of the bidirectional texture function
(BTF), which describes the small but visible geometry details on
the feather blade. A rendering algorithm combining the L-system
and the BTF displays feathers photorealistically while capitalizing
on graphics hardware for efficienc y. Based on this framework of
feather modeling and rendering, we developed a system that can
automatically generate appropriate feathers to cover different parts
of a bird’s body from a few “k ey feathers” supplied by the user, and
produce realistic renderings of the bird.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems; I.3.3 [Computer
Graphics]: Picture/Image Generation. J.3 [Life and Medical Sci-
ences]: Biology;

Keywords: L-system, bidirectional texture function, natural phe-
nomena, rendering, feather, bird

1 Introduction

Since the earliest times, the natural beauty of feathers has fascinated
humans – from Hawaiian chiefs adorned in brightly colored robes
of feathers to Native Americans wearing exquisitely crafted head-
dresses. Feathers are everyday wear for birds, who use feathers to
fly , to keep warm, and to attract mates. Despite their ubiquitous na-
ture, we do not have a systematic way to model and render feathers
in computer graphics. This work is an attempt to fill that gap.

There are two main tasks in feather modeling and rendering.
The first is the modeling and rendering of individual feathers. At
the macroscopic level, feathers come in different types and shapes:
bristles, contour feathers, down, flight feathers, semiplumes, and
filoplumes [11]. At the microscopic level, feathers have a special
appearance which is attributable to their barbs and barbules [11]

�
3F Beijing Sigma Center, No 49 Zhichun Road, Haidian District, Bei-

jing 100080, P R China, email: bainguo@microsoft.com

Figure 1: An eagle modeled and rendered using our system.

shown in Fig. 3. These fine-le vel visible geometry details consti-
tute the mesostructure of the feather blade [6, 3]. The main chal-
lenges in modeling and rendering feathers are to allow the user to
easily generate many feathers of different shapes and to capture the
special appearance of feathers.

The second task is growing feathers on birds. Looking at a
bird you can see that various types of feathers are arranged over
the bird’s body in an extremely ordered fashion. Feathers overlap
each other, usually covering most of a bird’s skin and thus creat-
ing a streamlined shape that is perfect for flight. Achieving this
feather arrangement by manually placing thousands of feathers onto
a bird’s body is clearly very tedious and time-consuming.

In this paper, we present two techniques, one for each task de-
scribed above. For modeling and rendering of individual feath-
ers, our technique uses a bidirectional texture function (BTF) [3]
controlled by a parametric L-system [14]. Consistent with feather
anatomy [18], this L-system allows the user to generate feathers of
different shapes by adjusting a few parameters. Another important
feature of our L-system is that it simulates the random gaps in the
vanes of feathers, which are important for visual realism.

The special feather appearance arises from both spatially-variant
surface reflectance and local surface height variations due to the
barb-barbule mesostructure. The mesostructure, for example, cre-
ates fine-scale shadows, occlusions, and specularities that are inte-
gral parts of the feather appearance [6, 3]. To capture this level of
complexity, we developed a feather rendering algorithm based on
the L-system and a realistic BTF [3] that models the barb-barbule
mesostructure and the directional radiance distribution at each sur-
face point. This BTF is pre-computed so that graphics hardware
can be used to render feathers efficiently .

Our technique for feather growing allows the user to provide a
3D model of a bird and a number of “k ey feathers” at different

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1 (212-869-0481 or e-mail p rmissions@acm.orge .
© 2002 ACM 1-58113-521-1/02/0007 $5.00

630

Figure 2: The user interface of our feather modeling system. The sketch on the left illustrates the rachis curve, the left and right barb curves,
and the left and right outline curves. The user can interactively change these curves to control the overall shape of the feather. Window (1) is
for controlling the rachis curve, window (2) for the left and right barb curves, and window (4) for the left and right outline curves. Window
(3) is a user-supplied texture.

locations on the model. The feather growing algorithm then auto-
matically generates all feathers on the model, guided by the shape
and orientation hints from the user. The feather growing process
includes creating a feather for the current location based on nearby
“k ey feathers” and placing all feathers so created in an orderly fash-
ion. The main challenge in growing feathers is determining the
orientations of feathers such that neighboring feathers do not inter-
penetrate. We address this problem with a recursive collision detec-
tion technique.

Fig. 1 provides an example of bird rendering generated by our
system. Applications of realistic feather modeling and rendering in-
clude display of birds and feather objects (Native Americans head-
dresses, feather ornaments, etc.) in motion pictures and games, es-
pecially those including birds or feather objects as main characters
or objects of importance. Realistic rendering of birds and feather
objects are also desirable for web-based education (e.g., virtual bird
walk) or product display.

The rest of the paper is organized as follows. In Section 2, we
review some related work. Section 3 discusses the modeling and
rendering of individual feathers. Section 4 describes our system for
placing feathers on a bird’s body. In section 5, we show examples of
feather modeling and rendering. We conclude with some discussion
about future work in Section 6.

2 Related Work

A number of researchers have mentioned feathers in their papers.
Dai et al. developed a method for synthesizing feather textures
of a special class of feathers, i.e., Galliformes feathers [1]. Using
chaotic structures, they modeled the ”e ye-like spot” and ”ri ver-like
strip” for feathers in the Galliformes family. They also crafted an
ad-hoc branching structure to model feather skeleton. Schramm
et al. applied subsurface modeling technique to the study of the
surface reflectance properties of an iridescent hummingbird feather
[19]. Franco and Walter presented a parametric model for feather
modeling based on Bezier curves [4]. Two nice examples are shown
in [4], but no algorithm details are given.

L-systems have been used by Prusinkiewicz et al. extensively to
capture the natural beauty of plants [13, 14, 15]. A plant is mod-
eled as a linear or branching structure composed of repeated units
called modules. An L-system represents the development of this

structure by productions. In the original L-system [7], the modeled
structure is a finite collection of modules and each module is in one
of the finite number of states. Parametric L-systems increase the
expressiveness of L-systems by adding a state vector of numerical
parameters [5, 15]. The meanings of the parameters depend on the
semantics of the module definition. For example, the parameters
may describe the shape of a plant being modeled. Parametric L-
systems are important for feather modeling because it allows the
user to easily create a large number of feathers by varying the pa-
rameters. L-systems have also been used by Parish and Müller for
modeling urban environments [10]. We are not aware of L-systems
used for feathers or birds.

The BTF was introduced by Dana et al. for describing real-world
textures [3]. A 2D texture is a poor description for real-world tex-
tures because it completely ignores surface mesostructures. The
BTF, on the other hand, captures surface mesostructure well. Sum-
maries of recent work on the BTF can be found in [2, 8, 20]. A
concept related to the BTF is the polynomial texture map proposed
by Malzbender et al. [9]. The polynomial texture map can model
the appearance changes of real-world textures due to change of il-
lumination, but the viewing direction must be fix ed.

3 Individual Feathers

3.1 Feather Geometry

Fig. 2 illustrates the user interface for modeling feather geometry.
We know from Fig. 3 that the geometry of a feather is defined by
its rachis and the barbs distributed along both sides of the rachis.
In our system, the shapes of the rachis and the barbs are mainly
controlled by the rachis curve ������� , left barb curve 	�
 ����� , right barb
curve 	�� ����� , left outline curve
�
 ����� , and right outline curve
�� �����
as shown in Fig. 2. With these curves, the user has fine control over
feather geometry, which is necessary for modeling various types of
feathers. For example, a flight feather has a narrow leading edge
that the wind hits first and a wider trailing edge. Flightless birds,
on the other hand, have almost symmetrical sides on corresponding
feathers. This difference in feather geometry can be captured by
adjusting the outline curves

 ����� and
�� ����� .

For simplicity, we assume that the shapes of all barb curves on
the same side of the rachis are identical except for their lengths.

631

Figure 3: Feather anatomy. The rachis or shaft of the flight feather
supports the vanes (i.e., the blades) of the feather. Within the vane
of the feather, there are two lateral sets of barbs, interlocking the
feather together. On both sides of a barb are many barbules.

Under this assumption the barb curves at the position ��������� along
the rachis are 	�
 ����� and 	�� ����� with lengths determined by
�
 �������
and
�� ������� respectively.

We can regard a feather as a branching structure composed of
repeated units called modules. An L-system represents the devel-
opment of a branching structure by productions [14]. A production
replaces a predecessor module by several successor modules. A
production can either be context-free and depends only on the mod-
ule replaced, or be context-sensitive, in which case the production
depends on the replaced modules as well as its immediate neighbor
modules. We use context-free productions of the form

��� � �"!$#%� �'&)(+*�� , - � &.&
where

���
is the production label, whereas

�/!$#0�
,
&.(1*��

, and
- � &)& are

the predecessor, condition, and successor respectively. The produc-
tion is carried out only if the condition is met.

Given the rachis, barb, and outline curves, we can model feather
geometry using a parametric L-system [14, 13] as follows:

2 �43 �657��98:�43 � � � �;�=< > , ?A@CB � ��D 5E��F ?A@CG � ��D 57��F 3 � �IH J ��IKL�4@ B � ��D�M � �NM < O B , @ B � ��DPMQH J ���RS�4@ G � ��D�M � �TM < O G , @ G � ��D�MUH J �
(1)

where
>

defines the length of the feather as well as the density
of the barbs at each side of the rachis while

O B
and

O G
define

the lengths of the left and right barbs respectively. We follow the
notation of [14, 13]. The axiom

3 �65E� generates a feather based on
the rachis and barb curves. Production

� 8
produces a small segment

of the rachis according to the rachis curve �V����� and grows a barb
on each side of the rachis using recursion. Production

��K
creates

a small segment of the left barb according to the left barb curve	�
 ����� while production
��R

proceeds similarly on the right barb. The
leftmost image in Fig. 4 shows a feather created using equation (1).

A problem with equation (1) is that it ignores the interaction be-
tween neighboring barbs. A feather geometry generated by equa-
tion (1) looks plausible but too regular. For a real feather, the two
lateral sets of barbs within the vane of the feather interlock the
feather together. The interlocking is important for flight, keeping
the air from rushing right through the feather. When the interlock-
ing system of a feather is disturbed, as when a twig brushes through
a feather, random gaps form between the barbs on the same side of
the rachis. This is a phenomenon that we want to capture qualita-
tively. On the one hand, neighboring barbs cling to each other by
the little hooks called cilium on the ends of the barbules shown in

Figure 4: The leftmost feather is generated without random gaps
in the feather blade. The other four feathers demonstrate different
kinds of feathers that can be generated by changing a few parame-
ters in the feather modeling system.

Fig. 3 [11]. On the other hand, external forces can break the inter-
locking if the total external force exceeds that exerted by the little
hooks. To simulate this effect, we introduce external forces into our
parametric L-system as follows

2 �43 �65 D 5 D 57�� 8 �73 � ��D�W B D�W G � �E�X< >
&&

W B Y W[Z
&&

W G Y W\Z, ?]@ B � ��D 5E��F ?]@ G � ��D 5E��F 3 � �IH J;D�W B H W\^1D�W G H W\^ ���KU�73 � ��D�W B D�W G � �E�X< >
&&

W B _ W[Z
&&

W G Y W\Z, ?]`CB�@CB � ��D 5E��F ?A@CG � ��D 5E��F 3 � ��H J;D 5 D�WaG H W ^ ���RC�73 � ��D�W B D�W G � �E�X< >
&&

W B Y W[Z
&&

W G _ W\Z, ?]@ B � ��D 5E��F ?]` G @ G � ��D 5E��F 3 � ��H J$DbW B H W[^TD 5E���cC�73 � ��D�W B D�W G � �E�X< >
&&

W B _ W[Z
&&

W G _ W\Z, ?]` B @ B � ��D 5E��F ?A` G @ G � ��D 5E��F 3 � ��H J$D 5 D 57���dU�7@CB � ��D�M � �TM < O B , @CB � ��D�MUH J ���eC�7@ G � ��D�M � �NM < O G , @ G � ��D�MUH J �
where

W B
and

W G
are the total external forces on the left and right

barbs respectively.
` B

and
` G

are directional rotations of the left
and right barbs in response to

W B
and

W G
. The productions

� 8
through

��c
basically say that for each step we move along the rachis

curve, we increment
WfB

and
WfG

by a random external force
W ^

. If
at some point

W B
(
W G

) exceeds the force
W[Z

exerted by the cilium,
the left (right) barb is rotated by a random angle g in a direction
determined by

W B
(
W G

). The rotation of a barb
@

is assumed to be
within the tangent plane defined by the tangent vectors of the rachis
and barb

@
at the point where the rachis and barb

@
intersect. The

random rotation angle is computed as g h i !1j � - � , where
!1j � - � is

the k -th random number generated with the random seed
-

and i is
a user-defined constant. After the rotation,

W B
(
W G

) starts to accu-
mulate again from zero. The random seed of each feather is saved
so that its shape remains the same every time it is rendered. Fig. 4
contains a number of feathers created with random gaps between
the barbs. Fig. 4 also exhibits feathers of different types and shapes
by changing parameters of the L-system.

3.2 Feather Appearance

We use a BTF to capture the mesostructure and the directional ra-
diance distribution at each point on the feather surface. A BTF is
a 6D function l ��m Don�D gNp D�q p D gT
 Dbq
 � , where � gNp D�q p � is the viewing
direction r and � gT
 D�q
 � is the lighting direction s at surface point��m Dtn � [3]. To calculate the BTF, we built a geometry model for the

632

uNv+wyx z�{b|~}��t� �P�

� {b���t����������������
�

Figure 5: Sampling the BTF on the barb-barbules mesostructure.
The sampling is done along the horizontal line highlighted in red.

barbs and barbules as shown in Fig. 5 and render this structure for
all viewing and lighting settings. Since the rendering is done off-
line, we can afford complicated geometry and sophisticated light-
ing models. The geometry shown in Fig. 5 is built according to the
anatomy of the barb-barbule structure. This model is opaque with
both diffuse and specular reflections.

As Fig. 5 indicates, we only sample the BTF along the m -axis to
obtain a 5D BTF

l���� ��m D gTp D�q p D g
 D�q
 � h l ��m Dtn7Z;D gTp D�q p D g
 D�q
 �
for some constant

n Z
. As we shall see, this 5D BTF l���� suffices

for rendering the actual 6D BTF of a feather because of the spatial
arrangement of barbs and barbules. We render the mesostructure
of barbs and barbules such that fine-scale shadows, occlusions, and
specularities are well-captured in l���� . The rendering is done off-
line by a ray-tracer.

The above model of feather mesostructure has a number of ad-
vantages. First, the off-line BTF calculations allow us to capture a
very complicated mesostructure and directional radiance distribu-
tion at each surface point. Second, the BTF can model additional
effects such as oil-film interference and iridescence, which is im-
portant for a class of familiar birds such as hummingbirds and ducks
[19]. Finally, we can easily support level-of-detail rendering with a
BTF. In close-up views, a BTF shows the mesostructure, as Fig. 7
demonstrates. As the viewing distant increases, we can mipmap the
BTF, which eventually becomes a BRDF at a distance.

3.3 Feather Rendering

When rendering a feather, we call our parametric L-system to gen-
erate the feather at run-time. The storage requirement is modest
for each feather because only its L-system parameters and the ran-
dom seeds are stored; details such as barb curves (polylines) and
the random gaps on the vane (the feather blade). As illustrated in
Fig. 3, a feather is composed of a series of barbs on both side of the
rachis and each barb has its barbules. We use the pre-computed 5D
BTF l���� to efficiently draw the barb-barbule mesostructure and thus
achieve realistic rendering for a wide range of viewing distances.

Fig. 6 illustrates the rendering of a feather. The feather L-system
describes a barb

@
by a polyline ��� with vertices �%� Z;D ������D �9�"� .

When we render a barb, we want to render the barb
@

as well as
the barbules attached to

@
. For this reason, we build a quadrilateral

strip along the polyline � � as shown in Fig. 6. The local light-
ing direction s � � ��� and viewing direction r � � ��� are calculated at
every vertex � � of ��� using the local coordinate frame at � � . On
each short edge � across the barb polyline ��� , a 1D texture is

�

 T¡

 N¢

 T£
 T¤

 ¤

¥

¦
§

¨

©4ª

«­¬® ¤°¯ ± ¬® ¤²¯

Figure 6: Feather rendering. Each barb curve is drawn as a quadri-
lateral strip using the pre-computed 5D BTF.

Figure 7: Left: A feather rendered without the BTF. Right: A
feather rendered with the BTF.

created by looking up color values from ³�´�´ using the directionsµ�¶ �¸·�¹ and º ¶ �¸·»¹ . Thus we obtain ¶ * ¼ ½ ¹ 1D textures of resolu-
tion

* ´ where
* ´ is the spatial resolution of the BTF ³ ´�´ . These

textures are combined with the RGBA texture of the feather (see
window (3) of Fig. 2) to render the barb ¾ by multi-texturing and
alpha-blending using graphics hardware. Fig. 7 compares feather
rendering with and without the BTF.

Fig. 8 illustrates different effects that can be achieved with the
BTF. When sampling the BTF with a ray tracer, we can adjust pa-
rameters so that the BTF gives a “hard” or “soft” appearance to the
feather. Fig. 8 (c) and (d) demonstrate occlusions and specularities
caused by barb mesostructure.

4 Feathering a Bird

4.1 Wings and Tail

We first construct feathers on the wings and the tail using skele-
tons. The feathers on a wing include the primaries, secondaries,
humerals, primary coverts, and secondary coverts (these feathers

633

Figure 8: (a) A feather with a “hard” appearance. (b) A feather with
a “soft” appearance. (c) Local occlusion on the feather blade. (d)
Local specularities on the feather blade.

are rooted on the scapula, ulna/radius, metacarpus and phalanx re-
spectively) [18]. As shown in Fig. 9, we use a polyline consisting
of four line segments to represent the wing skeleton. Similarly a
quadrilateral is used as the skeleton for the tail. Generally speak-
ing, a bird has about 9 to 11 primaries, 6 to 24 secondaries, and 8 to
24 tail feathers [11, 18]. In our system, the user specifies the num-
bers of feathers of each type and edits 8 key feathers on the wing
and 4 key feathers on the tail. The system generates other feathers
by interpolation. Fig. 9 illustrates the feather placement on a wing.

4.2 Contour Feathers

Contour feathers are the feathers that cover the body of a bird.
Given a polygonal model describing a bird’s body (without feath-
ers), we want to place feathers of different sizes and shapes on the
model. The huge number of feathers on a bird makes it impossible
to manually place and edit individual feathers. In our system, we
let the user specify a number of key feathers and their growing di-
rections; the system automatically generates a full coverage of the
bird based on the key feathers. This full coverage is created in three
steps:

a) re-tile the polygonal model to generate feather grow-
ing positions,

b) interpolate the key feather growing directions to all
feather growing points to get an initial growing di-
rection at each point, and

c) recursively determine the final feather growing direc-
tion at every feather growing point, with collisions
between feathers detected and rectified.

The output is a feather placement map indicating feather growing
positions and directions. The feather shape parameters are inter-
polated from that of nearby key feathers. These shape parameters
are used to generate a simplified geometry for each feather. This
simplified geometry is used for collision detection in step (c).

For an interpolated feather, the random gaps on the feather blade
is generated by giving the feather a new random seed.

Figure 9: Feather placement on a wing. Left: The skeleton is drawn
in red over the geometry model of the wing. The black lines show
the position and orientation of flight feathers. Middle: Rendering
of flight feathers. Right: Rendering of flight feathers along with
other small wing feathers.

Feather Growing Positions: The vertices of the given polygonal
model usually cannot be used directly as feather growing positions.
The feathers at different parts of a bird have different sizes, and
small feathers need to grow densely in order to cover the bird’s
skin. In addition, feathers tend to distribute evenly in a region of
constant feather density. Vertices of a polygonal model often do
not have these properties.

To address this problem, we retile the polygonal model using
Turk’s algorithm [21]. This retiling creates a polygonal model
whose vertices are evenly distributed over a region of constant den-
sity. Turk also introduced a simple technique for adjusting vertex
density based on curvature. We adapt this technique to controlling
vertex density based on the sizes of feathers, which are interpolated
from that of the key feathers using Gaussian radial basis functions,
where radius is defined as distance over the mesh, as computed us-
ing Dijkstra’s shortest path algorithm. The user has control over the
spatial extent and weight of each basis function. This interpolation
scheme is similar to that used by Praun et al. for creating vector
fields on a polygonal surface [12].

After retiling, the vertices of the new polygonal model are the
feather growing positions.
Feather Growing Directions: From the growing directions of key
feathers, we calculate initial growing directions at all vertices us-
ing Gaussian radial basis functions as described before. The initial
growing directions tend to cause inter-penetration of feathers be-
cause these directions are derived without any consideration to the
shapes of the feathers. To determine the final growing directions,
we need to perform collision detection on the feathers based on
their simplified geometry and to adjust the feather growing direc-
tions accordingly. Because of the large number of feathers and the
complex shape of a bird’s body, a collision detection between ev-
ery pair of feathers is likely to be very expensive. To address this
problem we adopt two strategies. First, we grow feathers in an or-
derly fashion according to the initial growing directions. Second,
we only consider local collisions between neighboring feathers be-
cause collisions rarely happen between feathers far away from each
other (two feathers are neighboring feathers if their growing posi-
tions are connected by an edge). We implement these two strategies
using a recursive collision detection algorithm.

As Fig. 10 illustrates, we first classify the vertices around each
vertex µ into two groups according to the initial growing direc-
tion ¿�À at µ . The first group consists of vertices � µ9ÁÃÂ4µ9ÁSÄ µÆÅ ,
where µ9ÁÇÄ µ means ¶�µ9Á�È µ ¹ÊÉ�¿�À Ë Ì . The second group is

634

Í

Î Ï

Ð'Ñ
Ò$Ó

ÔEÕ
Ö ×Ø Ù

Ú�Û

ÜVÝ

Þàß

á�â

ãåäçæ è é ê

ë�ì�í îðïÊñ

ò

ó ô

õ'ö
÷;ø

ùEú
û üý þ

ÿ��

�

� �

���
�
	

�
�
� �� �

�

���

���

���

�
�
� ��

Figure 10: Recursive collision for eliminating the inter-penetration
of neighboring feathers.

� µ9Á Â�µ9Á"! µÆÅ , with µ9Á#! µ meaning ¶�µ9Á[È µ ¹ÃÉ4¿�À $ Ì . Af-
ter the vertices around every vertex are so classified, we invoke the
following recursive collision detection algorithm at every vertex.

FindGrowingDirection(µ)�
If the growing direction at µ has already been found

return;
For each vertex µ¸Á9Ä µ

FindGrowingDirection(µ9Á);
While feather(µ) collides with feather(µ Á) for some µ Á Ä µ

adjust the growing direction at µ ;
For each vertex µ Á ! µ

FindGrowingDirection(µ9Á);Å

Here feather(µ) and feather(µ9Á) are the feathers at vertices µ and µ9Á
respectively.

To see how this algorithm works, consider a vertex µ on the
retiled model with initial growing direction ¿ À , as is shown in
Fig 10. The vertices around µ are vertices µ&% through µ(' . Among
these, µ*) Ä µ and µ(+ Ä µ , whereas µ,% ! µ , µ&- ! µ , µ&. ! µ
and µ(' ! µ . The algorithm will first determine the final growing
directions at µ*) and µ(+ by recursion. Based on the final growing di-
rections at µ) and µ + as well as the shapes of feathers at µ , µ) , andµ(+ , we can detect the collision between these feathers and adjust
the feather growing direction at µ by rotating it toward the surface
normal at µ . We rotate in small increments, stopping as soon as
no more collisions are detected. The growing direction at µ is now
considered final and we can process µ % , µ - , µ . , and µ ' through
recursions. For fast collision detection, a simplified geometry is
used for each feather. Fig. 11 shows the results of the final growing
directions.

Figure 11: The effect of recursive collision detection. Top: Feathers
rendered according to the initial growing directions. We see many
inter-penetrating feathers. Many feathers also grow into inside the
bird’s skin (rendered as a yellow surface). Bottom: Feathers ren-
dered according to their final growing directions.

5 Results

We have implemented our feather modeling and rendering system
on a PC with a 864 MHz Pentium III processor, 256M RAM and an
NVIDIA GeForce3 display adaptor.

Fig. 12 shows two images. On the top is a real image of a feather,
while a rendering from a similar viewing distance is shown on the
bottom. Comparison of the two images demonstrates the similarity
of our modeling and rendering result to an actual feather. Notice
the mesostructure and random gaps on the feather blade are real-
istically portrayed in the synthetic feather. These effects would be
very difficult to capture using textured polygons. It usually takes
the user a few minutes to model a feather.

Fig. 13 shows an American Indian Headdress. The feathers in the
image are modeled and rendered using our system. The feathers
were manually placed by a graphics artist. The white plume-like
effect is not rendered by our system but added by postprocessing.

Fig. 1 shows an eagle modeled and rendered using our system.
About 3500 feathers were placed on the bird. It took the user about
30 minutes to specify the 50 key feathers. Determining the feather
growing positions and the initial growing directions took a few min-
utes. The most time-consuming step is the calculation of the final
growing directions, which took about 30 minutes. Rendering speed
is about one minute per frame.

6 Conclusions

We have presented techniques for modeling and rendering feathers.
Our main idea is to represent a feather as a branching structure de-
scribed by a parametric L-system. This approach allows the user to

635

Figure 12: Top: Photograph of a real feather. Bottom: A synthetic
feather modeled and rendered using our system.

generate feathers of different types and shapes by adjusting a few
parameters. The randomness in feather geometry is also simulated
in the parametric L-system we derived. We described a rendering
algorithm based on this L-system and an efficient form of the BTF
representing the mesostructure of a feather blade. This algorithm
can efficiently generate photo-realistic renderings of feathers. We
also developed a system that allows the user to easily create a large
number of feathers on a bird’s body and render the bird realistically.

It is our hope that this work will stimulate other researchers to
explore the beautiful world of birds. Our work is only a first step
towards realistic and efficient rendering of feathers and birds. Many
aspects of this topic need further research. A limitation of our cur-
rent system is that it does not support down feather rendering. An-
other limitation is that we do not handle oil-film interference and
iridescence [19], which is important for a class of familiar birds
such as ducks and hummingbirds. We plan to address these issues
in the near future. Another interesting area of future work is bird an-
imation [16]. The flocking of birds has been explored by Reynolds
[17]. More work is needed to understand how individual birds fly .
Finally, we are interested in applying L-systems to other natural
phenomena.

Acknowledgments

We would like to thank Xinguo Liu for useful discussions. Many
thanks to Dongyu Cao for her illustrations, to Yin Li, Gang Chen,
and Steve Lin for their help in video production, to Steve Lin for
proofreading this paper, and to anonymous reviewers for their con-
structive critique, which has significantly improved the presentation
of this paper.

References
[1] Wen-Kai Dai, Zen-Chung Shih, and Ruei-Chuan Chang. Synthesizing feather

textures in galliformes. Computer Graphics Forum, 14(3):407–420, August
1995.

[2] Kristin J. Dana and Shree Nayar. 3d textured surface modeling. In Proceedings
of IEEE Workshop on the Integration of Appearance and Geometric Methods in
Object Recognition, pages 46–56, June 1999.

[3] Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koenderink.
Reflectance and texture of real-world surfaces. ACM Transactions on Graphics,
18(1):1–34, January 1999.

[4] Cristiano G. Franco and Marcelo Walter. Modeling the structure of feathers.
In Proceedings of SIBGRAPI 2001 - XIV Brazilian Symposium on Computer
Graphics and Image Processing, page 381, October 2001.

Figure 13: All feathers in this American Indian headdress are mod-
eled and rendered using our system.

[5] James Hanan. Parametric L-Systems and Their Application to the Modeling and
Visualization of Plants. PhD Thesis, University of Regina, 1992.

[6] Jan J. Koenderink and Andrea J. Van Doorn. Illuminance texture due to surface
mesostructure. Journal of the Optical Society of America, 13(3):452–463, 1996.

[7] Aristid Lindenmayer. Mathematical models for cellular interaction in develop-
ment, parts i and ii. Journal of Theoretical Biology, 18:280–315, 1968.

[8] Xinguo Liu, Yizhou Yu, and Heung-Yeung Shum. Synthesizing bidirectional
texture functions for real-world surfaces. Computer Graphics Proceedings, An-
nual Conference Series, pages 97–106, August 2001.

[9] Tom Malzbender, Dan Gelb, and Hans Wolters. Polynomial texture maps. Pro-
ceedings of SIGGRAPH 2001, pages 519–528, August 2001.

[10] Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In Proceed-
ings of SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference
Series, pages 301–308, August 2001.

[11] Christopher M. Perrins and Alex L. A. Middleton. The Encyclopedia of Birds.
Checkmark Books, 1985.

[12] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. Proceed-
ings of SIGGRAPH 2000, pages 465–470, July 2000.

[13] Przemyslaw Prusinkiewicz, Mark Hammel, Jim Hanan, and Radomír Mech. Vi-
sual models of plant development. Handbook of Formal Languages, 1996.

[14] Przemyslaw Prusinkiewicz, Mark Hammel, Radomír Mech, and Jim Hanan. The
artificial life of plants. SIGGRAPH 95 Course Notes, 7:1–38, 1995.

[15] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of
Plants. Springer-Verlag, 1990.

[16] Balajee Ramakrishnananda and Kok Cheong Wong. Animating bird flight using
aerodynamics. The Visual Computer, 15(10):494–508, 1999.

[17] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
In Computer Graphics (Proceedings of SIGGRAPH 87), volume 21, pages 25–
34, Anaheim, California, July 1987.

[18] Bart Rulon. Painting Birds Step by Step. North Light Books, 1996.

[19] Morgan Schramm, Jay Gondek, and Gary Meyer. Light scattering simulations
using complex subsurface models. In Graphics Interface ’97, pages 56–67, May
1997.

[20] Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang, Baining Guo, and Heung-Yeung
Shum. Synthesis of bidirectional texture functions on arbitrary surfaces. Com-
puter Graphics Proceedings, Annual Conference Series, July 2002.

[21] Greg Turk. Re-tiling polygonal surfaces. Computer Graphics (Proceedings of
SIGGRAPH 92), 26(2):55–64, July 1992.

636

